Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.951
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731905

RESUMEN

A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.


Asunto(s)
Cricetulus , Canal de Sodio Activado por Voltaje NAV1.5 , Linaje , Penetrancia , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Humanos , Animales , Células CHO , Femenino , Masculino , Adulto , Persona de Mediana Edad , España , Mutación con Pérdida de Función , Fenotipo , Mutación
2.
Pediatrics ; 153(6)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721668

RESUMEN

Molecular autopsy has recently been gaining attention as a means of postmortem diagnosis; however, it is usually performed using the victim's blood sample at the time of death. Here, we report the first case of a deceased infant with Brugada syndrome whose diagnosis was made with banked cord blood. A seemingly healthy 1-year-old male infant collapsed while having a fever; this collapse was witnessed by his mother. Despite cardiopulmonary resuscitation, he died of ventricular fibrillation. No abnormalities of cardiac structure were identified on autopsy. Genomic samples were not stored at the time because of a lack of suspicion for familial arrhythmia. Five years later, his sister showed Brugada electrocardiogram pattern while febrile from Kawasaki disease. Their father showed a spontaneous type 1 Brugada electrocardiogram pattern. A heterozygous SCN5A p.R893C variant was found by genetic testing in the proband's father and sister. Furthermore, the proband's genetic testing was performed using his banked cord blood, which identified the same variant. Family history of Brugada syndrome with an SCN5A-R893C variant and clinical evidence led to a postmortem diagnosis of Brugada syndrome in the proband. Identification of this variant in this case later contributed to verifying SCN5A-R893C as a pathogenic variant through data accumulation. Banked cord blood may prove useful for conducting molecular autopsies in previously undiagnosed cases of sudden death in which genomic samples were not stored.


Asunto(s)
Autopsia , Síndrome de Brugada , Sangre Fetal , Canal de Sodio Activado por Voltaje NAV1.5 , Humanos , Síndrome de Brugada/genética , Síndrome de Brugada/diagnóstico , Masculino , Canal de Sodio Activado por Voltaje NAV1.5/genética , Lactante , Electrocardiografía , Muerte Súbita/etiología
3.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533639

RESUMEN

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Asunto(s)
Ritmo Circadiano , Miocitos Cardíacos , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Ratones , Miocitos Cardíacos/metabolismo , Masculino , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/genética , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Conexina 43/metabolismo , Conexina 43/genética , Ratones Noqueados , Potenciales de Acción
4.
Circ Arrhythm Electrophysiol ; 17(4): e012374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426305

RESUMEN

BACKGROUND: A pathogenic/likely pathogenic variant can be found in 20% to 25% of patients with Brugada syndrome (BrS) and a pathogenic/likely pathogenic variant in SCN5A is associated with a worse prognosis. The aim of this study is to define the diagnostic yield of a large gene panel with American College of Medical Genetics and Genomics variant classification and to assess prognosis of SCN5A and non-SCN5A variants. METHODS: All patients with BrS, were prospectively enrolled in the Universitair Ziekenhuis Brussel registry between 1992 and 2022. Inclusion criteria for the study were (1) BrS diagnosis; (2) genetic analysis performed with a large gene panel; (3) classification of variants following American College of Medical Genetics and Genomics guidelines. Patients with a pathogenic/likely pathogenic variant in SCN5A were defined as SCN5A+. Patients with a reported variant in a non-SCN5A gene or with no reported variants were defined as patients with SCN5A-. All variants were classified as missense or predicted loss of function. RESULTS: A total of 500 BrS patients were analyzed. A total of 104 patients (20.8%) were SCN5A+ and 396 patients (79.2%) were SCN5A-. A non-SCN5A gene variant was found in 75 patients (15.0%), of whom, 58 patients (77.3%) had a missense variant and 17 patients (22.7%) had a predicted loss of function variant. At a follow-up of 84.0 months, 48 patients (9.6%) experienced a ventricular arrhythmia (VA). Patients without any variant had higher VA-free survival, compared with carriers of a predicted loss of function variant in SCN5A+ or non-SCN5A genes. There was no difference in VA-free survival between patients without any variant and missense variant carriers in SCN5A+ or non-SCN5A genes. At Cox analysis, SCN5A+ or non-SCN5A predicted loss of function variant was an independent predictor of VA. CONCLUSIONS: In a large BrS cohort, the yield for SCN5A+ is 20.8%. A predicted loss of function variant carrier is an independent predictor of VA.


Asunto(s)
Síndrome de Brugada , Humanos , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Pruebas Genéticas , Arritmias Cardíacas/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5/genética , Mutación
5.
PLoS One ; 19(3): e0298820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38452156

RESUMEN

BACKGROUND: 14-3-3 proteins are ubiquitous proteins that play a role in cardiac physiology (e.g., metabolism, development, and cell cycle). Furthermore, 14-3-3 proteins were proposed to regulate the electrical function of the heart by interacting with several cardiac ion channels, including the voltage-gated sodium channel Nav1.5. Given the many cardiac arrhythmias associated with Nav1.5 dysfunction, understanding its regulation by the protein partners is crucial. AIMS: In this study, we aimed to investigate the role of 14-3-3 proteins in the regulation of the human cardiac sodium channel Nav1.5. METHODS AND RESULTS: Amongst the seven 14-3-3 isoforms, only 14-3-3η (encoded by YWHAH gene) weakly co-immunoprecipitated with Nav1.5 when heterologously co-expressed in tsA201 cells. Total and cell surface expression of Nav1.5 was however not modified by 14-3-3η overexpression or inhibition with difopein, and 14-3-3η did not affect physical interaction between Nav1.5 α-α subunits. The current-voltage relationship and the amplitude of Nav1.5-mediated sodium peak current density were also not changed. CONCLUSIONS: Our findings illustrate that the direct implication of 14-3-3 proteins in regulating Nav1.5 is not evident in a transformed human kidney cell line tsA201.


Asunto(s)
Proteínas 14-3-3 , Canales de Sodio Activados por Voltaje , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Miocitos Cardíacos/metabolismo , Línea Celular , Arritmias Cardíacas , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
6.
J Biol Chem ; 300(3): 105715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309503

RESUMEN

NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Canal de Sodio Activado por Voltaje NAV1.5 , Ubiquitina-Proteína Ligasas Nedd4 , Ubiquitinación , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Células HEK293
7.
Genes (Basel) ; 15(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38397190

RESUMEN

Several mutations in this gene for the α subunit of the cardiac sodium channel have been identified in a heterogeneous subset of cardiac rhythm syndromes, including Brugada syndrome, progressive cardiac conduction defect, sick sinus node syndrome, atrial fibrillation and dilated cardiomyopathy. The aim of our study was to associate some SCN5A polymorphic variants directly with confirmed coronary stenoses in patients with non-LQTS ventricular fibrillation/flutter treated by an implantable cardioverter defibrillator. MATERIALS AND METHODS: A group of 32 unrelated individuals, aged 63 ± 12 years, was included in the study. All the patients were examined, diagnosed and treated with an implantable cardioverter defibrillator at the Department of Internal Cardiology Medicine, Faculty Hospital Brno. The control group included 87 persons of similar age without afflicted coronary circulation, which was confirmed coronagraphically. Genomic DNA was extracted from samples of peripheral blood according to the standard protocol. Two SCN5A polymorphisms-IVS9-3C/A (rs41312433) and A1673G (rs1805124, H558R)-were examined in association with coronary artery stenosis in the patients. RESULTS: In the case-control study, no significant differences in genotype distribution/allelic frequencies were observed for IVS9-3c>a and A1673G gene polymorphisms between patients with severe arrhythmias and healthy persons. The distribution of SCN5A double genotypes was not significantly different among different types of arrhythmias according to their ejection fraction in arrhythmic patients (p = 0.396). The ventricular arrhythmias with an ejection fraction below 40% were found to be 10.67 times more frequent in patients with multiple coronary stenosis with clinically valid sensitivity, specificity and power tests. In the genotype-phenotype study, we observed a significant association of both SCN5A polymorphisms with the stenosis of coronary vessels in the patients with severe arrhythmia. The double genotype of polymorphisms IVS9-3C/A together with A1673G (CCAA) as well as their simple genotypes were associated with significant multiple stenosis of coronary arteries (MVS) with high sensitivity and specificity (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.70; specificity 0.682; power test 0.359) Moreover, when a concrete stenotic coronary artery was associated with SCN5A genotypes, the CCAA double genotype was observed to be five times more frequent in patients with significant stenosis in the right coronary artery (RCA) compared to those without affliction of this coronary artery (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.682; specificity 0.700; power test 0.359). The CCAA genotype was also more frequent in patients without RCA affliction with MVS (p = 0.008); in patients with ACD affliction but without MVS (p = 0.008); and in patients with both ACD affliction and MVS compared to those without ACD affliction and MVS (p = 0.005). CONCLUSIONS: Our study presents a highly sensitive and specific association of two polymorphisms in SCN5A with significant coronary artery stenoses in patients with potentially fatal ventricular arrhythmias. At the same time, these polymorphisms were not associated with arrhythmias themselves. Thus, SCN5A gene polymorphic variants may form a part of germ cell gene predisposition to ischemia.


Asunto(s)
Fibrilación Atrial , Vasos Coronarios , Humanos , Estudios de Casos y Controles , Constricción Patológica , Fenotipo , Fibrilación Atrial/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética
8.
Europace ; 26(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375690

RESUMEN

AIMS: Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) detects myocardial scarring, a risk factor for ventricular arrhythmias (VAs) in hypertrophic cardiomyopathy (HCM). The LGE-CMR distinguishes core, borderzone (BZ) fibrosis, and BZ channels, crucial components of re-entry circuits. We studied how scar architecture affects inducibility and electrophysiological traits of VA in HCM. METHODS AND RESULTS: We correlated scar composition with programmed ventricular stimulation-inducible VA features using LGE intensity maps. Thirty consecutive patients were enrolled. Thirteen (43%) were non-inducible, 6 (20%) had inducible non-sustained, and 11 (37%) had inducible sustained mono (MMVT)- or polymorphic VT/VF (PVT/VF). Of 17 induced VA, 13 (76%) were MMVT that either ended spontaneously, persisted as sustained monomorphic, or degenerated into PVT/VF. Twenty-seven patients (90%) had LGE. Of these, 17 (57%) had non-sustained or sustained inducible VA. Scar mass significantly increased (P = 0.002) from non-inducible to inducible non-sustained and sustained VA patients in both the BZ and core components. Borderzone channels were found in 23%, 67%, and 91% of non-inducible, inducible non-sustained, and inducible sustained VA patients (P = 0.003). All 13 patients induced with MMVT or monomorphic-initiated PVT/VF had LGE. The origin of 10/13 of these VTs matched scar location, with 8/10 of these LGE regions showing BZ channels. During follow-up (20 months, interquartile range: 7-37), one patient with BZ channels and inducible PVT had an ICD shock for VF. CONCLUSION: Scar architecture determines inducibility and electrophysiological traits of VA in HCM. Larger studies should explore the role of complex LGE patterns in refining risk assessment in HCM patients.


Asunto(s)
Cardiomiopatía Hipertrófica , Canal de Sodio Activado por Voltaje NAV1.5/deficiencia , Taquicardia Ventricular , Fibrilación Ventricular , Humanos , Cicatriz/complicaciones , Cicatriz/patología , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Medios de Contraste , Gadolinio/farmacología , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Arritmias Cardíacas/etiología , Arritmias Cardíacas/complicaciones
9.
Pflugers Arch ; 476(5): 735-753, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424322

RESUMEN

Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.


Asunto(s)
Canalopatías , Canal de Sodio Activado por Voltaje NAV1.5 , Humanos , Animales , Canalopatías/genética , Canalopatías/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Miocardio/metabolismo , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología
10.
Expert Rev Hematol ; 17(1-3): 87-94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38230679

RESUMEN

BACKGROUND: This study aimed to explore the effect and mechanism of SCN5A overcoming ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in acute myeloid leukemia (AML) through promoting apoptosis. RESEARCH DESIGN AND METHODS: The tissues derived from AML patients were divided into Sensitive group and Resistance group according to the presence of drug-resistance. Human AML cell line HL-60 and drug-resistant strain HL-60/ADR were divided into HL-60/ADR-vector group, HL-60/ADR-SCN5A group, HL-60-vector group and HL-60-SCN5A group. RT-qPCR was used to detect the mRNA expression level of SCN5A; MTT assay to assess the survival rate and proliferation level of cells; flow cytometry to determine the apoptosis level; and western blot to check the levels of SCN5A, P-glycoprotein (P-gp), MDR protein 1 (MRP1), MDR gene 1 (MDR1), breast cancer resistance protein (BCRP), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) proteins in cells. RESULTS: SCN5A expressed lowly in drug-resistant AML tissues and cells. Up-regulation of SCN5A inhibited MDR in HL-60 cells, enhanced the chemosensitivity of HL-60/ADR, and increased the apoptosis levels of HL-60 and HL-60/ADR cells. However, over-expression of SCN5A inhibited the expression of MDR-related proteins. CONCLUSIONS: SCN5A may overcome ABC transporter-mediated MDR in AML through enhancing the apoptosis and inhibiting the expression of MDR proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Leucemia Mieloide Aguda , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/farmacología , Resistencia a Antineoplásicos/genética , Proteínas de Neoplasias/genética , Resistencia a Múltiples Medicamentos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Apoptosis/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética
11.
Int Heart J ; 65(1): 169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296574

RESUMEN

An error appeared in the article entitled "Rare Compound Heterozygous Missense Mutation of the SCN5A Gene with Childhood-Onset Sick Sinus Syndrome in Two Chinese Sisters: A Case Report" by Yanyun Wang, Siyu Long, Chenxi Wei, and Xiaoqin Wang (Vol. 64 No.2, 299-305, 2023). The name of the first affiliation on page 299 was wrong. It should be "Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China" and not "Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China".


Asunto(s)
Recolección de Datos , Mutación Missense , Síndrome del Seno Enfermo , Niño , Humanos , Pueblo Asiatico/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Hermanos , Síndrome del Seno Enfermo/diagnóstico , Síndrome del Seno Enfermo/genética , Recolección de Datos/normas
12.
Heart Rhythm ; 21(5): 630-646, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244712

RESUMEN

Sudden cardiac death in children and young adults is a relatively rare but tragic event whose pathophysiology is unknown at the molecular level. Evidence indicates that the main cardiac sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) physically interact and form macromolecular complexes (channelosomes) with common partners, including adapter, scaffolding, and regulatory proteins that help them traffic together to their eventual membrane microdomains. Most important, dysfunction of either or both ion channels has direct links to hereditary human diseases. For example, certain mutations in the KCNJ2 gene encoding the Kir2.1 protein result in Andersen-Tawil syndrome type 1 and alter both inward rectifier potassium and sodium inward currents. Similarly, trafficking-deficient mutations in the gene encoding the NaV1.5 protein (SCN5A) result in Brugada syndrome and may also disturb both inward rectifier potassium and sodium inward currents. Moreover, gain-of-function mutations in KCNJ2 result in short QT syndrome type 3, which is extremely rare but highly arrhythmogenic, and can modify Kir2.1-NaV1.5 interactions in a mutation-specific way, further highlighting the relevance of channelosomes in ion channel diseases. By expressing mutant proteins that interrupt or modify Kir2.1 or NaV1.5 function in animal models and patient-specific pluripotent stem cell-derived cardiomyocytes, investigators are defining for the first time the mechanistic framework of how mutation-induced dysregulation of the Kir2.1-NaV1.5 channelosome affects cardiac excitability, resulting in arrhythmias and sudden death in different cardiac diseases.


Asunto(s)
Arritmias Cardíacas , Canal de Sodio Activado por Voltaje NAV1.5 , Canales de Potasio de Rectificación Interna , Humanos , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Mutación , Animales
13.
Telemed J E Health ; 30(5): 1499-1503, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294864

RESUMEN

Telemedicine and remote monitoring devices, including implantable loop recorders (ILR), are increasingly adopted in the cardiologic setting. These are valuable tools in the arrhythmic stratification of patients at risk of sudden cardiac death, providing a tailored therapeutic management to prevent lethal arrhythmias. We report a case of an asymptomatic 18-year-old boy with a family history of syncope and cardiac arrest, who had a diagnosis of Brugada syndrome with an inducible type 1 pattern and carrier of a missense mutation of the SCN5A gene. In light of the risk factors, although not recommended by current guidelines, we decided to proceed with the implantation of an ILR with remote monitoring service. A few months later, an episode of asymptomatic sustained polymorphic ventricular tachycardia was promptly observed by the remote monitoring, leading to a timely implantation of a subcutaneous cardiac implantable defibrillator.


Asunto(s)
Síndrome de Brugada , Desfibriladores Implantables , Telemedicina , Humanos , Masculino , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Síndrome de Brugada/terapia , Adolescente , Telemedicina/métodos , Medición de Riesgo/métodos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Electrocardiografía , Electrocardiografía Ambulatoria/instrumentación , Electrocardiografía Ambulatoria/métodos , Mutación Missense , Muerte Súbita Cardíaca/prevención & control , Muerte Súbita Cardíaca/etiología
15.
Am J Physiol Heart Circ Physiol ; 326(3): H724-H734, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214908

RESUMEN

Scn5a heterozygous null (Scn5a+/-) mice have historically been used to investigate arrhythmogenic mechanisms of diseases such as Brugada syndrome (BrS) and Lev's disease. Previously, we demonstrated that reducing ephaptic coupling (EpC) in ex vivo hearts exacerbates pharmacological voltage-gated sodium channel (Nav)1.5 loss of function (LOF). Whether this effect is consistent in a genetic Nav1.5 LOF model is yet to be determined. We hypothesized that loss of EpC would result in greater reduction in conduction velocity (CV) for the Scn5a+/- mouse relative to wild type (WT). In vivo ECGs and ex vivo optical maps were recorded from Langendorff-perfused Scn5a+/- and WT mouse hearts. EpC was reduced with perfusion of a hyponatremic solution, the clinically relevant osmotic agent mannitol, or a combination of the two. Neither in vivo QRS duration nor ex vivo CV during normonatremia was significantly different between the two genotypes. In agreement with our hypothesis, we found that hyponatremia severely slowed CV and disrupted conduction for 4/5 Scn5a+/- mice, but 0/6 WT mice. In addition, treatment with mannitol slowed CV to a greater extent in Scn5a+/- relative to WT hearts. Unexpectedly, treatment with mannitol during hyponatremia did not further slow CV in either genotype, but resolved the disrupted conduction observed in Scn5a+/- hearts. Similar results in guinea pig hearts suggest the effects of mannitol and hyponatremia are not species specific. In conclusion, loss of EpC through either hyponatremia or mannitol alone results in slowed or disrupted conduction in a genetic model of Nav1.5 LOF. However, the combination of these interventions attenuates conduction slowing.NEW & NOTEWORTHY Cardiac sodium channel loss of function (LOF) diseases such as Brugada syndrome (BrS) are often concealed. We optically mapped mouse hearts with reduced sodium channel expression (Scn5a+/-) to evaluate whether reduced ephaptic coupling (EpC) can unmask conduction deficits. Data suggest that conduction deficits in the Scn5a+/- mouse may be unmasked by treatment with hyponatremia and perinexal widening via mannitol. These data support further investigation of hyponatremia and mannitol as novel diagnostics for sodium channel loss of function diseases.


Asunto(s)
Síndrome de Brugada , Hiponatremia , Ratones , Animales , Cobayas , Síndrome de Brugada/genética , Hiponatremia/genética , Corazón , Ventrículos Cardíacos , Canales de Sodio , Canal de Sodio Activado por Voltaje NAV1.5/genética , Potenciales de Acción
16.
J Gen Physiol ; 156(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226948

RESUMEN

During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and ß-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and ß-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.


Asunto(s)
Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Proteínas Quinasas , Tubulina (Proteína) , Animales , Humanos , Ratas , Membrana Celular , Análisis por Conglomerados , Células HEK293 , Proteínas Quinasas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
17.
Circ Res ; 134(1): 46-59, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38095085

RESUMEN

BACKGROUND: Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only ≈20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS: A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS: Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS: Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channel-related functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction.


Asunto(s)
Síndrome de Brugada , Células Madre Pluripotentes Inducidas , Canales de Sodio Activados por Voltaje , Animales , Humanos , Potenciales de Acción , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Estudio de Asociación del Genoma Completo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
18.
Pflugers Arch ; 476(2): 229-242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036776

RESUMEN

Loss-of-function variants of SCN5A, encoding the sodium channel alpha subunit Nav1.5 are associated with high phenotypic variability and multiple cardiac presentations, while underlying mechanisms are incompletely understood. Here we investigated a family with individuals affected by Brugada Syndrome (BrS) of different severity and aimed to unravel the underlying genetic and electrophysiological basis.Next-generation sequencing was used to identify the genetic variants carried by family members. The index patient, who was severely affected by arrhythmogenic BrS, carried previously uncharacterized variants of Nav1.5 (SCN5A-G1661R) and glycerol-3-phosphate dehydrogenase-1-like protein (GPD1L-A306del) in a double heterozygous conformation. Family members exclusively carrying SCN5A-G1661R showed asymptomatic Brugada ECG patterns, while another patient solely carrying GPD1L-A306del lacked any clinical phenotype.To assess functional mechanisms, Nav1.5 channels were transiently expressed in HEK-293 cells in the presence and absence of GPD1L. Whole-cell patch-clamp recordings revealed loss of sodium currents after homozygous expression of SCN5A-G1661R, and reduction of current amplitude to ~ 50% in cells transfected with equal amounts of wildtype and mutant Nav1.5. Co-expression of wildtype Nav1.5 and GPD1L showed a trend towards increased sodium current amplitudes and a hyperpolarizing shift in steady-state activation and -inactivation compared to sole SCN5A expression. Application of the GPD1L-A306del variant shifted steady-state activation to more hyperpolarized and inactivation to more depolarized potentials.In conclusion, SCN5A-G1661R produces dysfunctional channels and associates with BrS. SCN5A mediated currents are modulated by co-expression of GDP1L and this interaction is altered by mutations in both proteins. Thus, additive genetic burden may aggravate disease severity, explaining higher arrhythmogenicity in double mutation carriers.


Asunto(s)
Síndrome de Brugada , Humanos , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Sodio/metabolismo , Células HEK293 , Mutación , Fenotipo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
19.
Heart Rhythm ; 21(3): 331-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38008367

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is an inherited cardiac arrhythmogenic disease that predisposes patients to sudden cardiac death. It is associated with mutations in SCN5A, which encodes the cardiac sodium channel alpha subunit (NaV1.5). BrS-related mutations have incomplete penetrance and variable expressivity within families. OBJECTIVE: The purpose of this study was to determine the role of patient-specific genetic background on the cellular and clinical phenotype among carriers of NaV1.5_p.V1525M. METHODS: We studied sodium currents from patient-specific human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and heterologously transfected human embryonic kidney (HEK) tsA201 cells using the whole-cell patch-clamp technique. We determined gene and protein expression by quantitative polymerase chain reaction, RNA sequencing, and western blot and performed a genetic panel for arrhythmogenic diseases. RESULTS: Our results showed a large reduction in INa density in hiPSC-CM derived from 2 V1525M single nucleotide variant (SNV) carriers compared with hiPSC-CM derived from a noncarrier, suggesting a dominant-negative effect of the NaV1.5_p.V1525M channel. INa was not affected in hiPSC-CMs derived from a V1525M SNV carrier who also carries the NaV1.5_p.H558R polymorphism. Heterozygous expression of V1525M in HEK-293T cells produced a loss of INa function, not observed when this variant was expressed together with H558R. In addition, the antiarrhythmic drug mexiletine rescued INa function in hiPSC-CM. SCN5A expression was increased in the V1525M carrier who also expresses NaV1.5_p.H558R. CONCLUSION: Our results in patient-specific hiPSC-CM point to a dominant-negative effect of NaV1.5_p.V1525M, which can be reverted by the presence of NaV1.5_p.H558R. Overall, our data points to a role of patient-specific genetic background as a determinant for incomplete penetrance in BrS.


Asunto(s)
Síndrome de Brugada , Humanos , Sodio/metabolismo , Arritmias Cardíacas/metabolismo , Trastorno del Sistema de Conducción Cardíaco/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
20.
Circulation ; 149(4): 317-329, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37965733

RESUMEN

BACKGROUND: Pathogenic variants in SCN5A can result in long QT syndrome type 3, a life-threatening genetic disease. Adenine base editors can convert targeted A T base pairs to G C base pairs, offering a promising tool to correct pathogenic variants. METHODS: We generated a long QT syndrome type 3 mouse model by introducing the T1307M pathogenic variant into the Scn5a gene. The adenine base editor was split into 2 smaller parts and delivered into the heart by adeno-associated virus serotype 9 (AAV9-ABEmax) to correct the T1307M pathogenic variant. RESULTS: Both homozygous and heterozygous T1307M mice showed significant QT prolongation. Carbachol administration induced Torsades de Pointes or ventricular tachycardia for homozygous T1307M mice (20%) but not for heterozygous or wild-type mice. A single intraperitoneal injection of AAV9-ABEmax at postnatal day 14 resulted in up to 99.20% Scn5a transcripts corrected in T1307M mice. Scn5a mRNA correction rate >60% eliminated QT prolongation; Scn5a mRNA correction rate <60% alleviated QT prolongation. Partial Scn5a correction resulted in cardiomyocytes heterogeneity, which did not induce severe arrhythmias. We did not detect off-target DNA or RNA editing events in ABEmax-treated mouse hearts. CONCLUSIONS: These findings show that in vivo AAV9-ABEmax editing can correct the variant Scn5a allele, effectively ameliorating arrhythmia phenotypes. Our results offer a proof of concept for the treatment of hereditary arrhythmias.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco , Edición Génica , Síndrome de QT Prolongado , Ratones , Animales , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/diagnóstico , Arritmias Cardíacas , Miocitos Cardíacos , Adenina , ARN Mensajero , Canal de Sodio Activado por Voltaje NAV1.5/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...